Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.
نویسندگان
چکیده
Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C(3)N(4) (mpg-C(3)N(4)) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W(2)C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H(2) and O(2) in a stoichiometric ratio from H(2)O decomposition when supported on a Na-doped SrTiO(3) photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation.
منابع مشابه
Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting...
متن کاملSurface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting
Graphitic carbon nitride based polymers, being metal-free, accessible, environmentally benign and sustainable, have been widely investigated for artificial photosynthesis in recent years for the photocatalytic splitting of water to produce hydrogen fuel. However, the photocatalytic stoichiometric splitting of pure water into H2 and O2 with a molecular ratio of 2 : 1 is far from easy, and is usu...
متن کاملRoles of cocatalysts in semiconductor-based photocatalytic hydrogen production.
A photocatalyst is defined as a functional composite material with three components: photo-harvester (e.g. semiconductor), reduction cocatalyst (e.g. for hydrogen evolution) and oxidation cocatalyst (e.g. for oxidation evolution from water). Loading cocatalysts on semiconductors is proved to be an effective approach to promote the charge separation and transfer, suppress the charge recombinatio...
متن کاملHighly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light.
Highly dispersed rhodium nanoparticles (1.7 +/- 0.3 nm) prepared by a liquid-phase reduction method were loaded on a solid solution of GaN and ZnO without forming aggregates, achieving improved activity for visible-light-driven overall water splitting when the nanoparticles are coated with a chromia shell.
متن کاملCarbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.
The hydrogen evolution reaction (HER) is one of the two important half reactions in current water-alkali and chlor-alkali electrolyzers. To make this reaction energy-efficient, development of highly active and durable catalytic materials in an alkaline environment is required. Herein we report the synthesis of carbon-coated cobalt-tungsten carbide nanoparticles that have proven to be efficient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ChemSusChem
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2013